Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 392: 110907, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395253

RESUMO

The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Neoplasias , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética
2.
JMIR Med Educ ; 9: e47274, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988149

RESUMO

As we progress deeper into the digital age, the robust development and application of advanced artificial intelligence (AI) technology, specifically generative language models like ChatGPT (OpenAI), have potential implications in all sectors including medicine. This viewpoint article aims to present the authors' perspective on the integration of AI models such as ChatGPT in clinical medicine and medical education. The unprecedented capacity of ChatGPT to generate human-like responses, refined through Reinforcement Learning with Human Feedback, could significantly reshape the pedagogical methodologies within medical education. Through a comprehensive review and the authors' personal experiences, this viewpoint article elucidates the pros, cons, and ethical considerations of using ChatGPT within clinical medicine and notably, its implications for medical education. This exploration is crucial in a transformative era where AI could potentially augment human capability in the process of knowledge creation and dissemination, potentially revolutionizing medical education and clinical practice. The importance of maintaining academic integrity and professional standards is highlighted. The relevance of establishing clear guidelines for the responsible and ethical use of AI technologies in clinical medicine and medical education is also emphasized.

3.
J Environ Pathol Toxicol Oncol ; 31(1): 75-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22591286

RESUMO

Bacillus thuringiensis (Bt) parasporal proteins with selective anticancer activity have recently garnered interest. This study determines the efficacy and mode of cell death of Bt 18 parasporal proteins against 3 leukemic cell lines (CEM-SS, CCRF-SB and CCRF-HSB-2).Cell-based biochemical analysis aimed to determine cell viability and the percentage of apoptotic cell death in treated cell lines; ultrastructural analysis to study apoptotic changes and Western blot to identify the parasporal proteins' binding site were performed. Bt 18 parasporal proteins moderately decreased viability of leukemic cells but not that of normal human T lymphocytes. Further purification of the proteins showed changes in inhibition selectivity. Phosphatidylserine externalization, active caspase-3, cell cycle, and ultrastructural analysis confirmed apoptotic activity and S-phase cell-cycle arrest. Western blot analysis demonstrated glyceraldehyde 3-phosphate dehydrogenase as a binding protein. We suggest that Bt 18 parasporal proteins inhibit leukemic cell viability by cell-cycle arrest and apoptosis and that glyceraldehyde 3-phosphate dehydrogenase binding initiates apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Bacillus thuringiensis , Proteínas de Bactérias/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Linfócitos B/ultraestrutura , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Endotoxinas/farmacologia , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia , Linfócitos T/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...